Percolation approach is used to study the d.c. hopping conductivity and thermopower in systems with a Gaussian density of localized states typical for disordered organic materials. It is shown that the theoretical methods developed earlier for the description of hopping transport in disordered inorganic solids, such as amorphous semiconductors, can also be successfully applied to description of hopping transport in organic disordered solids, such as conjugated or molecularly doped polymers. Calculations within the percolation approach give results in excellent agreement with those obtained by using a more transparent, though less rigorous approach based on the concept of the transport energy.